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Analytic Sensitivities and Approximations in Supersonic and
Subsonic Wing/Control Surface Unsteady Aerodynamics

Wei-Lin Li* and Eli Livnet
University of Washington, Seattle, Washington 98195

Development of efficient, design-oriented analysis techniques and associated approximations for wing/
control surface unsteady aerodynamics is crucial to the success of any multidisciplinary aeroservoelastic
optimization of airplanes including active control technology. A design-oriented capability for unsteady
supersonic aerodynamics for planar wing/control surface configurations is presented here. Explicit ex-
pressions for aerodynamic influence coefficients make it possible to efficiently obtain analytic sensitivities
of generalized aerodynamic loads with respect to planform shape. Examination of the mathematical
structure of the discretization used, similar to other aerodynamic panel methods, reveals sources of dis-
continuity of derivatives with respect to shape in the supersonic case. Sources of nonsmooth behavior of
the unsteady aerodynamic loads in subsonic flow are identified and eliminated. The accuracy and com-
putational cost of alternative approximation techniques are studied. A second-order approximation tech-
nique based on the direct and adjoint solutions at a reference configuration is presented. Experience and
insight are gained in the area of design-oriented and approximate unsteady aerodynamics, to be used in
the nonlinear programming/approximation concepts approach to engineering optimization.

Nomenclature
[A(k, M.)] = matrix of aerodynamic influence
coefficients
b = reference length
DV = planform shape design variable
dy = half-width of kth aerodynamic element
{f} = approximate aerodynamic force vector

{f1}e = vector of forces on elements caused by
the motion in mode k

{H}, {0H,/ox} = displacement vectors and the slopes for
the downwash points because of motion
in the kth generalized displacement

{h.}, {0h/dx} = vectors of displacements and slopes of
deformation because of motion in mode k

i = V—1 (unit pure imaginary number)

K = kernel function of the lifting surface

integral equation

= unsteady factor

steady part of the kernel

reduced frequency

flight Mach number

number of aerodynamic boxes

generalized unsteady aerodynamic forces

= real and imaginary parts of the

generalized aerodynamic force matrix

= dynamic pressure

mainstream airspeed

s
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©
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X, X = limits of integration, Eq. (2)

X, Vi = coordinates of the ith downwash point

X, Vi = coordinates of the ith unsteady factor
evaluating point

Xo, Yo = relative distance of sending point from

receiving point
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B = V1 — M?in subsonic flow, and
M? — 1 in supersonic flow

{m} = adjoint (reverse flow) solution

{n} = approximate adjoint solution

O = area of trapezoidal element k

Subscripts

D qi = powers of x and y, respectively, for the
ith polynomial term in a mode shape
polynomial

Superscripts

T = transpose

* = adjoint (transpose, complex conjugate)

Introduction

HE rapid progress in airplane multidisciplinary design op-

timization (MDO)," following the success of structural
synthesis,” * calls for more multidisciplinary interactions to be
addressed as early as possible in the airplane design optimi-
zation process. Active control technology,” ” through its effects
on aeroservoelastic stability, dynamic stresses caused by gusts,
handling qualities, and passenger comfort, is an area of major
importance. However, only a limited amount of experience has
been gained to date in truly integrated aeroservoelastic syn-
thesis.

The key to the success and practicality of realistic airplane
configuration optimization involving aeroservoelastic con-
straints has been (as in the case of structural synthesis) the
nonlinear programming and approximation concepts (NLP/
AC) approach to engineering optimization.*” "> Because of the
high computational cost of each analysis in the interacting dis-
ciplines any effort to connect optimization algorithms directly
to detailed analyses in each of the disciplines will lead to im-
practical computational times, since many function evaluations
are required in the course of any realistic design optimization
process. In NLP/AC, optimization is carried out using approx-
imate, computationally fast, analysis techniques. Detailed anal-
ysis is used only to generate these approximations and fine-
tune them. It is, thus, important to have efficient approximate
analysis techniques in each of the disciplines involved. The
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better the accuracy of an approximation technique, the wider
the move limits that are used can be, the faster the convergence
of the process is, and the smaller the number of detailed anal-
yses required.* Some very effective approximations have been
developed in the structures area,” the most successful ones
based on insight into the physical and mathematical nature of
structural analysis problems. In other areas necessary for aero-
servoelastic synthesis, some promising approximations have
been examined," but in the area of wing/control surface un-
steady aerodynamics'” no such approximations are yet avail-
able.

Practically all of the work to date in the area of aeroservo-
elastic synthesis has been limited to sizing-type design varia-
bles. With a given planform shape, unsteady aerodynamic in-
fluence coefficient matrices can be calculated only once, and
variations in generalized aerodynamic forces depend only on
mode shape variations caused by changes in structural sizing
design variables. If fixed modes are used,"” a constant matrix
of generalized unsteady aerodynamic forces can be used
throughout the design optimization process.

In conceptual and preliminary design, however, airplane
shape variations should be considered before the shape of a
configuration is frozen. Generalized unsteady forces need to
be updated because of changes in wing planform. These gen-
eralized aerodynamic forces have to be evaluated at several
reduced frequencies, spanning the reduced frequency range of
interest. Rational function approximations are then fitted in the
frequency domain, so that linear time invariant (LTI) state—
space models can be constructed and used for modern control
synthesis techniques."

The challenge associated with planform shape optimization
is not only because of the intensive computation required for
the generation, but also because of time and again, and for
many reduced frequencies, of unsteady loads on wings and
control surfaces. Effective approximation techniques, as re-
quired by NLP/AC, are still unavailable. Linear and reciprocal
Taylor-series-based approximations perform generally quite
poorly.”” Analytic sensitivities of unsteady loads with respect
to planform shape and control surface size and locations are
required. In addition, recent experience shows that techniques
of steady aerodynamics, when used for wing-shape optimiza-
tion, may lead to nonsmooth behavior with respect to changes
in shape design variables."* Such nonsmoothness, when in the
context of analysis only (when only a few predictions of aero-
dynamic characteristics are required), presents no difficulty
since only very small fluctuations of predicted results are ob-
served. However, when used for optimization studies these
small fluctuations in analysis results may lead to large fluctu-
ations in the value of derivatives with respect to shape, ad-
versely affecting the convergence of the optimization process.

The development of design-oriented unsteady aerodynamic
analysis for wings and control surfaces in subsonic flight has
been presented in Ref. 12. It was guided by the desire to find
a modeling technique based on simple, explicit formulations,
making it possible to derive analytic sensitivities in closed
form, and gain insight into the mathematical structure of the
problem.

In this paper the work of Ref. 12 is extended to the su-
personic speed regime. Analytic sensitivities of supersonic
unsteady aerodynamic loads with respect to planform shape
are derived for planar wing/control surface configurations.
Smoothness of analysis results (in both subsonic and super-
sonic flows) is studied and some sources for nonsmooth be-
havior are identified and eliminated. New approximation tech-
niques for unsteady aerodynamic loads are evaluated in terms
of their accuracy and computational cost. The present work
adds insight and experience, where the development of reliable
approximation concepts is crucial to the success of multidis-
ciplinary aeroservoelastic synthesis for the early stages of air-
plane design.

Design-Oriented Supersonic Unsteady Aerodynamics
for Planar Wing/Control Surfaces

Techniques for the computation of unsteady aerodynamic
forces on combinations of lifting surfaces and bodies have
reached a certain maturity in the past several years.">' Effec-
tive panel (lattice) methods and assumed pressure methods for
planar and nonplanar lifting surfaces have both been found to
correlate quite well with experiments for subsonic and super-
sonic wings in attached, small disturbance flow, and have be-
come standard tools in industry, with application to a wide
range of airplane configurations.”” Using assumed pressure-so-
lution techniques, analytic sensitivities with respect to shape
have been derived in Refs. 18 and 19 for wings. Using the
subsonic doublet point method (DPM )***' for planar wing/con-
trol surface configurations, analytic sensitivities with respect
to planform and control surface shape have been derived in
Ref. 12 for the subsonic case. The subsonic DPM offers a
formulation in which aerodynamic influence coefficients are
simple to evaluate, exposing the relations between unsteady
aerodynamic pressures and wing/control surface shape, and
making it possible to obtain analytic sensitivities explicitly.

In an effort to gain similar insights, leading to analytic sen-
sitivities and approximations for supersonic wings and control
surfaces, a similar method was sought. Desirable properties
included simplicity of formulation and computational effi-
ciency, together with adequate accuracy for flutter and aero-
servoelastic analysis of real airplanes. The supersonic DPM >
was such a candidate. However, in some test cases, oscillatory
pressure distributions were reported with this method. Also in
the supersonic DPM a branching process is used to determine
the downwash on an averaging downwash area, depending on
how that averaging area is cut by Mach lines from the sending
doublet. There was a concern that these would lead to more
severe nonsmooth behavior of the predicted generalized
forces' than is inherent to the problem.

The design-oriented supersonic aerodynamic analysis of pla-
nar wing/control surface configuration developed here is based
on the ideas presented in Refs. 22-26. In the planar case, the
integral equation relating nondimensional pressure to nondi-
mensional downwash on a combination of lifting surfaces is

1
wix, y) = P f f Ap(&, MK(xo, yo) d& dm (1)
3

where the supersonic kernel is given by™
" M2 e—i/le e—t/GXQ
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3 is the area surrounded by the upstream Mach cone origi-
nating at the receiving point (x, y), and xo=x — & yo=y —
n R = Vxi - By3

X, = (xo — MR)B?> X,=(xo + MR)/B> B=VM> -1

The wing (or combination of wings) is divided into trape-
zoidal elements with sides parallel to the flow. The pressure
on each trapezoid is assumed constant. The integral equation
is written in discrete form, with the element pressures {Ap,}
as unknowns

1 N
wx;, y) = o 2 Ap, [fj K(x; — &y — m) d§ dﬂ}

N
1 _
g; Apk'(K'KOjk 3)
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The kernel is now expressed as a product of a steady part and
an unsteady factor.> > The unsteady factor and steady part
are expressed as, respectively,

Kjk = K(Xj - ék, Y, — ﬁk) = K(fo, )70) 4)

2Xo
(k ” 2% 44 s)
0)jk g;,y% x%_ Bzy% o Yo

where o denotes the part of the element area of o inside the
forward Mach cone with apex at (x;, ). The summation is
carried out only for those sending elements submerged totally
or partially in the Mach cone, since the influence coefficient
(K- Ko)u is zero for a sending element completely outside the
Mach cone. The unsteady factor is written as

_ - M52 e—il:»)h e—il;)?z
K, = e "o _yo = — + = =
2%, \Xo + X, X, + X,

RY% % e
+ == 2 755 dv
2%o %, (Vo + v

Xl = Xl(f, )7), Xz = Xz(f, )7) (6)

which is evaluated at the centroid of the integration area of
the kth element. When the element is completely inside the
forward Mach cone of the upwash point, the coordinates of
the centroid are (Fig. 1)

1
Xo=—" [(xm + xoz)()’mxoz - )702x01)
60'k
+ (xp2 + x03)()702x03 - )703x02)
)704x03)

YorXos)] 7)

+ (xos + xm)()’mxm -

+ (xou + xm)()’mxm -
B 1
Yo ="—[(Yor + Yo)(YorXoz — YorXo1)

60

+ (Yoo + Y03)(YooXas — YosXo)

+ ()703 + )704)()703x04 - )704x03)

+ ()704 + )701)()704)501 - )701x04)] (8)

with yo, = Yo4 and yo, = Yos.

The steady factors (Ko);y are formulated as functions of co-
ordinates of the four corner points of kth sending element in
the following form:

(Ko ik = F(xor, Yor, S) — F(xo, Yoz, S12)
+ F(xo3, Yo S34) — F(Xos, You, S3a) 9)

where the function F(x,, yo, S), depending on whether S is
smaller or greater than (3, is given by

) TR
F(xoyoS)=f—\/x§*—[32y§*2S€n<xo 20 By">+
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Yo

and the sweeps of the leading edge 12 and trailing edge 34 of
each trapezoidal element are

S = (xor — xoz)/(Ym - )702)
(1D
Sy = (o3 = X/ (Yozs — You)
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Fig. 1 Sending and receiving elements.

The previous formulation is still valid when the Mach line
crosses the kth element, but the points outside of the Mach
cone have to be replaced by the intersection points on the
leading or trailing edges of the element, so that pressures out-
side of the Mach cone do not contribute to downwash at the
receiving point (xo = 0, Yo = 0). For example, in Fig. 1 the
Mach line intersects the trailing edge of element a at point
(X 04 You), then

Kjk = F(xor, Yor, S12) — F(xop, Yoz, S12)
+ F(xos, Yo S3a) — F(Xo4, You, S0 (12)

If the sending element is crossed by the Mach line, the in-
tegration area does not cover the whole trapezoidal shape. The
formulations of (Xo, yo) for the evaluation of the unsteady fac-
tors are modified to take only the actual integration area within
the Mach cone into account. Explicit, simple expressions for
(Xo, o) are available for these cases also.

Because K is singular at the point x, = 0, a special treatment
is required when the sending element is the same as the re-
ceiving element (element b in Fig. 1). Following Ref. 22, the
unsteady kernel is expanded in terms of reduced frequency

2 . 2 k?
K(x,, yo)ziz |:1 — ik (xo + b) - —
Ry

o Xo 2

2M* -1 Ry} + R
X | xo+ —=—y5+ 200y =) 4 .. (13)
2xo  Xo— R

BZ

As yo= 0 and x, approaches zero, the term —2ik/R is not small,
and the unsteady factor cannot be taken as constant over the
element area. As in Ref. 22, the integration of the term
—2ik/R is added to create an average K; when evaluating the
inﬂupnce coefficients for (x, = 0, y, = 0). The integration of
—2ik/R can be formulated as

I = 2—112 dxo d
= - R Xo dYo
= —21'/2{(;()602, )702) - G(xo, )701)} (14)
*2\/FS2 arc sin [—Bzyo — Sx0:| S| < B
Bxo — Syo)
0 IS[ =8
IV B B0 — Sxo— V(SZ— B — B S| >p
Blxo — Syo)
(10)

where (Xo1, Yoi) and (xo2, Yo2) are the corner points of the lead-
ing edge of the element if the whole line is inside the Mach
cone. If a corner point is outside of the Mach cone, it is re-
placed by the intersection point of the leading edge and the
Mach line (Fig. 1). The integral should then be
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Xo — Slz)’o . [32)70 Si2Xo s
\% [32 - 53 are s |:B(x0 - Slzyo):| | 12| <P
G(xo, )70)=)70 En% 0 |S12| = B (15)
Yo x0_512)70 n‘BZYO_Slzxo_RV(%z_BZ) |S |>B
VST, — [32 Bxo — Si2yo) 2
I = —2il€{G(x02, Vo) — G(xors Yor)) (16) steady aerodynamic forces with respect to planform shape DV,

The equations relating nondimensional upwash to nondi-
mensional pressure differences on a set of trapezoidal elements
is

8mw; = 2 Aje fu (17
k=1
where
fi = Apo (18)

(KKO)'k/O-k k+j

A, = _ g . 19

" {[(KKO,-k + Lo, k=] (19)

Equations for (K,); and K are explicit and simple to eval-
uate, except for the integral in Eq. (6)

X 7
2 e—tla» d
- 5.3, dv
x, (y% v2)3/2

which is evaluated using the expansion series of Refs. 22 and
27. Generalized aerodynamic forces, associated with down-
wash caused by motion in mode n

[Al{f}.=8m{w}. (20)

and generalized displacement m (mode shape {k},) can now
be obtained from

Q= {h}{ f}n 1)

Analytic Sensitivities with Respect
to Planform Shape

When fixed shape generalized coordinates (deformation
functions) defined in the global (x, y) axes are used, then up-
wash and displacement at a panel control point depend only
on the location of that point in the global axes. For example,
simple polynomial Ritz functions can be used in the equivalent
plate structural wing modeling method,” or to fit finite element
displacements given on a finite element grid.”

A typical deformation mode, j, x”7y%, is then given as a set
of displacements at control points over the aerodynamic grid,
in a vector

he (= k) (yk)*” (22)

The location of element control points in terms of planform
shape design variables, used to parameterize the shape of the
planform and size and location of control surfaces, can be
given explicitly by

X = x{DV) Vi = Yk(DV/) (23)
Where DV, are shape design variables. The explicitexpressions
for elements of the aerodynamic influence coefficient matrix
[Eq. (17)], as well as expressions for areas of trapezoidal el-
ements, upwash on elements and displacements on elements,
all make it possible to obtain analytic sensitivities of the un-

explicitly.
Eq. (17) is differentiated as follows:

of aw 0A
Al y——¢ =8 y——¢ — | — 24
N e R o R I
Since an L- U decomposition of the coefficient matrix is avail-
able from the analysis step, the analytical shape sensitivity
solutions correspond to new right-hand sides, and involve only
forward and backward substitutions.
Normalized downwash at a point (x, y), because of a mode
shape x”y“, is given by
xpyq
b

Py a

Xy
b

ik

J ~
+ 8_ (xPy?) = ik + p(x” 'y =w(x,y) (25)
X

and for mode (displacement shape function) i, this can be dif-

ferentiated with respect to planform design variables

IW:0y
Iy DV

(26)

J ( ) Iw,0x,
— WXy, Vi) =
gDy e Y = oDy

I?U depends, in general, on the distance between the area
centroids of sending and receiving points [Eqgs. (6-8)]. The
steady part (K,); obtained by integration over the area of a
sending element depends on the (x, y) coordinates of the rel-
ative distances of the vertices of that area from the upwash
point [Egs. (9-11)]. Similarly, the area of the sending element
also depends on the coordinates of those vertices.

Since the topology of the mesh is not changed and every
point of the mesh is linked explicitly to the overall shape DV
[Eq. (23)], then by chain rule differentiation it is possible to
obtain analytic sensitivities of the aerodynamic influence co-
efficients with respect to planform shape DV. Explicit expres-
sions for those analytic sensitivities are listed in the Appendix.
Note that when the sending trapezoid is crossed by a Mach
line from the receiving point, coordinates of the Mach line
intersections with the element depend on the relative position
of the element with respect to the receiving point. As the mesh
changes because of changes in DV, sensitivities of the inter-
section point location with respect to DV can be calculated. In
certain situations, this leads to a discontinuity in the shape
derivatives of the contribution of a sending element, at points
where, because of changes of the mesh, an intersection point
moves from one side of the element to the neighboring side.
In Fig. 1, element C is in such a position. As far as integration
of the steady part of the kernel over the sending area is con-
cerned, this discontinuity is somewhat offset by the contribu-
tion of the neighboring element, where the intersection point
also moves from one side to another, to compensate for the
change in the first element. Differences in pressure on the two
neighboring elements and different unsteady factors contribute
to an overall discontinuous derivative in such a situation. How-
ever, when only a few elements are involved, the overall effect
on planform shape sensitivity is expected to be small.

This does not apply, of course, to situations in which overall
Mach line patterns change over the configuration. Among
many possibilities, an example here is a case in which for some
reference planform shape the Mach line is exactly on the lead-
ing edge of a wing. As the aspect ratio is changed, or the
sweep of the leading edge, the leading edge becomes either
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subsonic or supersonic, depending on the direction of change.
In such cases, discontinuous shape derivatives are expected
and reflect the physical nature of the problem.

Subsonic Analytic Sensitivities

The supersonic capability described previously complements
the subsonic capability, based on the subsonic DPM, discussed
in Ref. 12. With explicit formulations and analytic-shape sen-
sitivities available for wing/control surface configurations in
unsteady subsonic and supersonic flow, attention can now be
focused on issues of smooth/nonsmooth behavior (Ref. 14) and
the search for effective approximation concepts.

Alternative Approximations: Taylor-Series-Based
Approximations

The limitations of Taylor-series-based unsteady aerodynamic
direct and reciprocal approximations have already been ex-
posed in Ref. 12 in the context of subsonic flow. These ap-
proximations are explicit and fast computationally and they are
constructed based on the results of analysis and sensitivity
analysis for a reference (base) configuration. In the direct case

Oon = (Q)mn + {VQ,n} o{DV — DV} 27

Approximation Based on Linear Perturbation

In an effort to obtain better approximations that allow larger
move limits for NLP/AC-based optimization, two additional
approximations are studied here. Both involve more compu-
tational effort than the direct and reciprocal Taylor-series ap-
proximations. The first is based on linear perturbation of the
discretized lifting surface equations, where, to first order

[Alo{Af} = 8w{Aw} — [AA]{f}o (28)

This is similar to the sensitivity equations [Eq. (24)], and only
forward and backward substitutions are required for the vari-
ation in element forces. However, it is proposed in the present
approximation that the changes in downwash and aerodynamic
influence coefficient matrix will be calculated exactly. That is,
with every variation of planform, a new downwash vector and
a new aerodynamic influence coefficients matrix should be cal-
culated, capturing more of the nonlinearities involved with
shape changes. Because of the explicit formulation of down-
wash and [A] matrix terms in both subsonic DPM and the
present supersonic capability, such a computation is fast com-
pared with other methods of solution in lifting surface theory.
Thus,

[AA] = [A] = [Alo (29)
{Aw} = {w} = {w}o (30)

and new approximated generalized forces are obtained using
the exact new displacement vector {k}, the new element areas,
and the force vector { fo + Af}.

Second-Order Approximation

The adjoint set of discretized lifting surface equations and
reverse flow theorems have been used in the past™®” to deter-
mine optimal positions of collocation points, to extrapolate un-
steady aerodynamic forces from coarse grids to finer grids, or
to calculate accurate unsteady aerodynamic loads in cases in
which the reverse flow problem is simpler than the direct flow
problem. In an application of the same principles to approxi-
mation concepts for NLP/AC, a new approximation technique
for generalized aerodynamic loads with second-order accuracy
is developed as follows:

Let the discretized lifting surface system of equations be

[AI{f }. = 8m{w}, (31

and the generalized force associated with deformation mode
m and downwash mode n

Q= {h) 0l [} = 87 (R} [TA] (W), (32)

An adjoint solution vector can now be introduced so that
Qun = (YW}, = 8T(h} A] '{w}, (33)

Thus, the equation for the adjoint vector is

[AT*{n}. = 8w{h}.. (34)
As Eqgs. (32) and (33) show, the generalized force can be
obtained using either the direct solution [Eq. (31)] or the ad-
joint solution [Eq. (34)]. As Ref. 31 shows, if approximations
are available for the direct and adjoint vectors { f} and {m},

then an approximation with second-order accuracy can be ob-
tained for the generalized force in the form

Opon= (R W FYn + (MY 5w}, — (8M{RYEANF). (35

or in an alternative formulation, insensitive to the scale of the
approximate {M}, { f} vectors:

. (R 5L F ) 1) v )
o = 8 : !
Qo = 8T T T H AN ),

(36)

The influence coefficient matrix [A] together with downwash
and displacement vectors are newly evaluated at each new de-
sign point. However, Eq. (31) is not solved again for new
planforms. The direct and adjoint solutions at the reference
configuration are now used as approximate solutions in Eq.
(36), leading to a second-order approximation of the associated
generalized load.

It is interesting to compare the computational effort required
in this approximation with that of a detailed analysis. If N
aerodynamic elements (trapezoids) are used in the mesh over
the configuration and M deformation modes, then (counting
floating point operations, flops,” excluding the regeneration of
the [A] matrix and the downwash and displacement vectors)

the total number of complex flops in a complete solution is*>**

2N?/3 + 2N°M + 2NM? 37)

Using the approximation of Eq. (36), with direct and adjoint
solutions from the reference (base) design point, the number
of complex flops is calculated to be

2N°M + 2NM? + ANM? + 2M? (38)

Comparing the operation counts in Eqgs. (37) and (38), it is
found that substantial savings can be materialized if the num-
ber of displacement mode shapes is small with respect to the
number of aerodynamic elements. This is usually the case with
panel and lattice methods. For instance, if 20 modes and 200
panels are used, the computational effort associated with the
second-order approximation is 29.3% of the effort needed for
complete solution. If 20 modes and 400 panels are used, or 10
modes and 200 panels, then the second-order approximation
requires only 14.9% of the computational effort required for
complete solution. These counts do not include the generation
of new aerodynamic influence coefficient matrices, downwash
vectors, and deformation vectors, an effort that is identical
whether a complete solution or second-order approximation is
used. Comparison of CPU times required for a complete de-
tailed solution and a second-order approximation (including
the generation of the A matrix) on a DEC Alpha workstation
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shows that, with 20 modes and 400 aerodynamic boxes on a
60-deg swept wing at M = 1.44, the second-order approxi-
mation takes 42% as long as the complete solution (17.1 vs
40.2 s). When the number of boxes is increased to 900, the
second-order approximation takes 83.35 s, compared with
349.35 s for the detailed analysis, a savings of 76%.

If major improvements in accuracy over the standard Taylor-
series-based approximations are obtained with the second-
order approximation, it should be seriously considered for
wing-shape optimization with NLP/AC, despite the added
computational burden.

Test Cases

A series of test cases are used here to examine different
aspects of the techniques and issues discussed in this work.
First, the accuracy of the design-oriented supersonic unsteady
aerodynamic capability, as developed here, is studied by ap-
plication to four wing cases taken from Refs. 22, 33, and 35.
The configurations studied are the rectangular wing (AR = 2)
and the 60-deg swept wing (AR = 1.85) used in Ref. 22, as
well as the AGARD wing-tail configuration (Fig. 2) and
AGARD wing/control surface configuration (Fig. 3). Steady
and unsteady pressure distributions as well as generalized aero-
dynamic forces with and without control surfaces are studied.

Studies of the smoothness of unsteady aerodynamic predic-
tions in both subsonic and supersonic flows follow. Accuracy
of the alternative approximation techniques discussed was also
examined in subsonic as well as supersonic cases.

Results

Steady pressure distributions on the 60-deg swept wing at
M = 1.44 (Fig. 4), the AGARD wing- tail configuration at M
= 1.2 (Fig. 5), and the rectangular wing at M = 1.2 (Ref. 33)
show good correlation with analytic, assumed pressure,” and
doublet point results and no oscillatory behavior. The case of
the AGARD wing-tail configuration is interesting, because
with the same coarse mesh, the supersonic doublet point
method yields oscillatory pressures near the leading edge,
whereas results obtained with the present capability show no
such oscillation. Comparison of unsteady aerodynamic forces

Xer Xa
R
Y 1.0 YR ‘ ‘ 7777
= - /
- //
0.5} o
— - ]
005 i ) 3 T X
Fig. 2 AGARD wing- tail configuration (14 x 7 grid).
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Fig. 3 AGARD wing/control surface configuration (23 x 20
grid).
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Fig. 6 Fighter-type wing with control surface (21 X 20 grid).

obtained using the present capability with results from other
methods for the AGARD wing-tail configuration is given in
Ref. 33. Comparisons of unsteady aerodynamic forces for the
AGARD wing/control surface configuration are shown in Ta-
ble 1. In all cases, the present capability performs well.

With confidence in the reliability of the design-oriented su-
personic capability developed here and the subsonic DPM >
for interfering planar wings and wing/control surface config-
urations, issues of concern for MDO applications, the main
thrust of the present work, can now be addressed.
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Table 1 Generalized forces of the AGARD tapered swept-back wing/control
surface configuration

Re[Q;] Im[Q; A/k
i J Method 9° Method 19° Present Method 9° Method 19° Present
1 1 0.092 0.05753 0.01275 2.426 2.35676 2.41350
1 2 2.498 2.42334 2.45431 0.698 0.69640 0.77476
1 3 1.615 1.53169 1.57971 0.578 0.56087 0.63896
1 4 —0.067 —0.07017 —0.08498 0.626 0.57108 0.59942
1 5 0.284 0.28064 0.26291 0.020 0.02434 0.03232
2 1 —0.100 —0.11323 —0.10793 0.422 0.39447 0.38198
2 2 0.505 0.47387 0.43905 0.845 0.82809 0.84785
2 3 1.494 1.42893 1.46799 0.260 0.24737 0.30550
2 4 —0.085 —0.08105 —0.08480 0.175 0.15194 0.15453
2 5 0.266 0.25941 0.24172 0.021 0.02391 0.03097
3 1 —0.087 —0.09637 —0.09962 0.502 0.48224 0.48805
3 2 0.554 0.53147 0.52636 0.508 0.49556 0.50943
3 3 0.852 0.80105 0.81116 0.308 0.28980 0.32380
3 4 —0.078 —0.07266 —0.07610 0.129 0.11363 0.11676
3 5 0.251 0.24205 0.22444 0.019 0.02362 0.02991
4 1* 0.024 0.00934 —0.08816 0.674 0.61908 0.64531
4 2° 0.656 0.60126 0.00063 0.287 0.26820 0.29432
4 3° 0.644 0.57210 0.61678 0.392 0.27538 0.31202
4 4° —0.084 —0.07840 0.60107 0.295 0.25233 0.26836
4 5° 0.167 0.15660 0.15049 0.011 0.01336 0.01824
5 1 —-0.012 —0.01286 —0.01190 0.018 0.01700 0.01525
5 2 0.021 0.01900 0.01694 0.040 0.03991 0.03752
5 3 0.056 0.05343 0.05005 0.026 0.02568 0.02463
5 4 —0.010 —0.00972 —0.00917 0.007 0.00566 0.00517
5 5 0.036 0.03495 0.02898 0.004 0.00512 0.00508

ZResul[s are reported in Ref. 33.
Present results match Ref. 33 results in a switched order. It seems that Ref. 33 results for Re[Q, ;] are printed in the

wrong order.
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Fig. 7 Nonsmooth variation of the real parts of a subsonic gen-
eralized force Q(x, xy) and its sensitivity dQ/0X ;. as a function of
the x coordinate of the tip leading edge X, (Fig. 4), convergence
= 10 ° for the Ueda series (* normalized by their absolute values
at Xsx= 2.8).

Sample results of a parametric study of the subsonic fighter-
type wing (Fig. 6) to examine the smoothness of aerodynamic
results, in the light of the findings of Ref. 14, are shown in
Figs. 7 and 8. The x coordinate of the wing-tip leading-edge
point X% was changed from the reference value of 2.8 m, with
200 points covering the range shown. Examination of the real
and imaginary parts of the subsonic Q(x, xy) shows nonsmooth
behavior of the generalized force and its shape sensitivity (real
parts shown in Fig. 7). The fluctuations in analysis predictions
of the generalized force itself are very small. When used in
shape optimization, however, the jumps in derivative can hurt
optimization process convergence or lead the resulting design
to reside in a local minimum that has no physical meaning.

An investigation into the source of the numerical fluctua-
tions in subsonic flow cases was conducted and the cause was

Fig. 8 Variation of the real parts of a subsonic generalized force
Q(x, xy) and its sensitivity as a function of X, (Fig. 4), conver-
gence = 10 " for the Ueda series (* normalized by their absolute
values at X,z = 2.8).

found in the series evaluation of the B function in the ker-
el22.27:

X ikv

e
B(k, yo, X) = f W—vz)mdv

= Bk, yo, X) + iB,(k, yo, X)

Tightening the convergence criterion used in this series eval-
uvation led to elimination of the nonsmooth behavior and
smooth results were then obtained (Fig. 8).

In the supersonic case, conducted on the AGARD wing, no
nonsmooth behavior was found. Since only a small increase
in computational effort was noticed when convergence crite-
rion were tightened, all results for supersonic cases were ob-
tained with a convergence criteria of 10°° (Fig. 9).
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The present design-oriented capabilities, in both the sub-
sonic and supersonic flow regimes, provide smooth predictions
of unsteady aerodynamic loads with respect to planform shape.
It is interesting to note that even in the supersonic case, where
individual trapezoids may move into and out of the forward
Mach cone (or be cut on different sides by a Mach line as they
move) the predicted generalized forces seem to be quite
smooth. The smearing of pressure predictions along planform
Mach lines by a panel method, which cannot capture pressure
gradient discontinuities the way an assumed pressure method
can,”> is probably a contributor to this smooth behavior.

The rest of the results shown here are used to assess the
performance of the alternative approximation techniques dis-
cussed previously. Figure 10 shows a sample of the compari-
son of linear Taylor-series, linear-perturbation, and second-or-
der approximations used for a unsteady subsonic case, where
the wingtip is moved in a spanwise direction (Yx).

For the AGARD wing in Fig. 2, supersonic approximations
are compared in Fig. 11 for the case in which the wing tip is
moved spanwise (the tail is not included in the calculation).
The accuracy of the second-order approximation (based on the
direct and adjoint solutions at the reference design) is very
good over quite large move limits.

Results of parametric studies, where a control surface is in-
creased and decreased in size (Fig. 4), are shown in Fig. 12
for the subsonic fighter wing case. The supersonic studies in-
volving the control surface (Fig. 3) are shown in Figs. 13 and
14. In our case, the effect of control surface size on the re-
sulting generalized forces is almost linear. The linear Taylor-

Re(Q,,) M=12, k=1.0 | Re(@Q/0X,p)
_____ - h=x, xy -10.0
[ e=10"

15[

1.0F

05}

OO Il Il T IR SRR SRR ST R R Il Il Il

29 30 31 32 33 34 35 36
XAR

Fig. 9 Variation of the real parts of a supersonic generalized
force Q(x, xy) and its sensitivity dQ/dX ar, as a function of the x
coordinate of the tip trailing edge X ,x (Fig. 2, wing only), conver-
gence = 10",
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Fig. 10 Alternative approximations. Fighter-type wing (Fig.
4), variation of Y, unsteady subsonic flow (k = 1.5, M = 0.8),
Im[Q(y?, x?7)].

series-approximation performs very well in this case. The sec-
ond-order approximation performs quite well when real parts
of generalized forces are approximated. Its accuracy deterio-
rates when imaginary parts (damping) are involved. The mag-
nitude of these terms, however, is small compared with the
generalized force terms for this wing. It is felt that additional
studies are needed to understand this deterioration of perfor-
mance. Additional results can be found in Ref. 34.

Re@n0) M=1.2, k=0.5
I O ExactData o
3.0+ Linear Extrapolation

-- Linear Perturbation
e 20d-Order Approximation

Ya

Fig. 11 Alternative approximations. AGARD wing (Fig. 2, wing
only), variation of Y, unsteady supersonic flow (k = 0.5, M = 1.2),

Re[Q(y®, x%)].
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Fig. 12 Alternative approximations. Fighter wing/control surface

(Fig. 4), variation of Y., unsteady subsonic flow (k = 1.5),
Re[hinge moment], M = 0.8.
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Fig. 13 Alternative approximations. AGARD wing/control sur-
face (Fig. 3), variation of Y, unsteady flow (k = 0.5), Re[hinge
moment], M = 1.2.
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Fig. 14 Alternative approximations. AGARD wing/control sur-
face (Fig. 3), variation of Y, unsteady flow (k = 0.5), Im[Q(x?,

2) Planform shape sensitivity of the steady part (Ko)x

(K o) d d
aT(;;A = 8D_V F(xo1, Yo, S12) — 8D_V F(Xo2, Yoo, S12)
d d
+ DV F(x03, Yos, S34) — DV F(xo4, You, S34) (A3)

where shape sensitivities of the function F' are obtained from
shape sensitivities of the relative distances of vertices of the
sending element from the receiving element [Egs. (9) and (10)]

d daFaxg,, dF Yo, oF 9dS
F(Xom Yom S) = + +
oDV 0X 00DV V00DV aS oDV

m=1,2,3,4 (A4)

with
8), M =1.2.
or 2Vxon = B*Yam
- — O—Byo’ (A5)
The development of robust approximations for aerodynamic X o, Yol Xom = SYom)
loads will be pursued and discussed in future works; it is the
capability to effectively model and accurately approximate un- OF  2X%0nVXon — B Vom
steady aerodynamics forces on a lifting surface/control surface Vo = Y2 Xam — SV (A6)
25 arc sin [—Bzym, — Sxo,,:| S| < B
OF _2Va3,— B33, ., (xm oo B °> v i (A7)
o —— n
3~ (xon— Syon Blyond —25 . |BYou= Srou= V(S? = BA(xa,. — Bya) 15| > B
\/[32 — 52 Bxo,. — Syo,)
configuration that will lead to _th@ st_lccess.ful application of  OF Xom + BYon
NLP/AC to planform shape optimization with active controls lim —= =4 |[—————— (A8)
Isl>p 08 Xom — By()m

technology.

Conclusions

A design-oriented supersonic unsteady aerodynamic solution
technique for wing/control surface combinations has been pre-
sented, complementing the subsonic capability presented pre-
viously. Explicit expressions for aerodynamic influence coef-
ficients and upwash and deformation distributions made it
possible to obtain analytic sensitivities with respect to plan-
form shape in an efficient manner. Sources of analysis and
derivative nonsmoothness were identified in both the subsonic
and supersonic cases. They were traced to the series evaluation
of part of the kernel, and, in the supersonic case, to changing
patterns of Mach lines over trapezoidal elements and whole
configurations. A second-order approximation technique, based
on the direct and adjoint solutions at a design reference case,
was introduced and shown to yield accurate predictions of un-
steady air loads over move limits of up to 25%. The new
capabilities and new approximations studied constitute part of
the development of disciplinary tools required for configura-
tion optimization of advanced airplanes with high authority
active controls.

Appendix: Derivatives of the Supersonic
Aerodynamic Matrix [A]

1) Differentiation of the aerodynamic influence coefficients
[Eq. (19)]

Ay = (RKo)ulos (A1)

Ky 90,
aDv oDV

+ (KO)jk

- * 9DV

0A ;i L i (K o)
oDV~ o,

} (A2)

The geometric terms 9x4,,/0DV and dYyo../dDV are calculated
according to the movement of mesh points with variation of
planform shape design variables [Eqgs. (23)]. And from Eq. (11)

351> _ X0 -~ 0Xo2 _s Yo _ Yoz ( -~ )
apv _ |apv opv > \aDV ~ oDV Yo ™ Yoz

(A9)
9S54 | 9% _ 0Xoa _g Vo _ NVos ( _ )
oDV~ |apv ~ apv ~ "*\opv ~ apDV Yos T You

(A10)

3) K is evaluated at (X, o), the center of the integrating
area of the source element. Thus,

oK dK\ 0%, aK\ 9y,
— ===+ |— | = (A11)
oDV — \ox,) 9DV d¥,) oDV

From Eq. (6) the derivatives of the unsteady factor with respect
to the centroid coordinates are

ak 2-2 . B M2—2 -
—= —Bzy_" — k) K+ =22
X, R°%, 2Xo

t, + X 2+ B2X? k
X {e "N xxi)z 12 32 x20 B > 12 +i—
M3X7 + y3) R (%o + X)) MR

i+ B2 k
py bl S
R*(Xo + X MR

(A12)

4 oo iR Xo + X, _
MX3 + yo)”




LI AND LIVNE 379

IR _2R” - Bo My

- — . efifozo
Vo YoR 2%,
3RV, X, —ikv 1
Yo ¢ —ikX,

X dv + | —
{M2 Ll ()7% + V2)5/2 v € |:M(X% + )70)3/2
M3t, — 2MR . kM

— — i —

R(xo + X)) R(%, + X))

M?t, — 2MR
R*(%o + Xo)°

1
+ ‘e—zk)(2 - _
[M(X% + v

_ IG—M (A13)
"RGo + X))

The case of a panel inducing upwash on itself [Egs. (22) and
(23)] is differentiated in a same manner.
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